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Abstract. Vector coherent state theory {s applied to matrix representations of Osp(2/2} in
the U{1/1) basis. The branching rule of Osp(2/2}JU{1/1} is derived. Finite-dimensional
irreducible matrix representations of Osp(2/2) in the U{1/1) basis are discussed and matrix
elements of Osp(2/2} generators are obtained by using the K-matrix technique.

i. Iniroduction

Lie superalgebras osp(m/2n) or osp(m/2n, R) are useful in the exploitation of super-
symmetry in physics. For example, the non-compact supergroups osp{m/2n, R} have
been employed in general superfield theories [1], and osp(4/2, R) is also useful in
describing the nuclear spectra of the nickel isotopes [2].
Recently, some detailed investigations have been carried out iite ir

representations of gl{m/n) in the gl(m)@gl(n) basis [3-5], and osp(m/2n) in the
so{m)@sp(2n) basis [6,7]. In[3] and [7] Le Blanc and Rowe demonstrate that vector
coherent state (vcs) theory applies without substantial modification to the representa-
tion theory of classical Lie superalgebras in the Lie algebra basis. Recent development

[8] shows that vcs theory applies equally well to Lie superalgebras in the superalgebra

basis, In this circumstance, no crade star renresentation exists
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In this paper, we will consider osp(2/2) in the u{1/1) basis, which is the starting
point for studying the general case osp(2m/2n)} in the u{m/ n) basis. In section 2, we
briefly review the main properties of the osp(2/2) and u(1/1) finite-dimensional
irreducible representations. In section 3, the irreducible representation of osp(2/2) in
the u{1/1) basis will be constructed via vcs theory. In section 4, we will derive matrix
elements of osp(2/2) generators.

£, Filtn dun
LG i1l

" A il
iul Ui

2. The superalgebras osp(2/2) and u(1/1)

The superalgebra osp{2/2) can be defined by the following commutation and anti-
commutation relations:

[Etl), E¢]=iE1 [E(2)1 Et]=:FE.i- [E—5E+]+=ElIJ+E(2J
[Ej, A]=£A. [Ei. Ad]=%A, [A_,A).=-Ey+Ej
[B.,B.]=2E, [Ei, B.]=+2B, [E;, B.]=0 (2.1)
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[A:thi]+=\/_2—B:: [-B:t:E#:]::FJiAt [Bi,A;]=:‘:\/§E*
[A;, Ei]+=[Bi, E=]=[B:, A.1=0

(?)z(l/:z&w;_) Gi%(j—f:f_)
B9 (-6

The symbols W.., V., Q; (i=0, —,+), and B were used in [9] to denote the generators

of the osp(2/2).
The quadrupole Casimir operator of osp(2/) can be written as

where

—
NS
L]

S

Cylosp(2/2)) =3Cx(u(1/1)) +H A, A_— A_A,)+i(B_B,+B.B_) (2.3)
where )
Cx(u(1/1))=(E{)*+ E_E. - E,E_—(E})’ (2.4)

is the quadrupole Casimir operator of u(1/1).

There are two classes of star representations of osp(2/2), which are composed of
the (b, j) representations for which b is real and +b=j [9].

From (2.1) we can see that {E§ (i=1, 2), E.} forms u(1/1) subalgebra. The u(1/1)
irreducible representation is two dimensional. The basis vectors can be expressed as

(nimdy g |,
m] ml _l
We also have [8]
E. (m'|m2)>=(S(m.+mz)(m.+mz))”2 “""'"”) (2.5a)
m|_1 ml
E. (mim2)> — S(m, + ma)(S(m,+ ms)(my + ma))? ('"‘li"ll}> (2.5b)
1
where S(x) is the sign of x, namely
[ 1 for x=0
= 2.6
Stx) {—1 for x <0. (26)

There are also two classes of star representations for u(1/1) corresponding to m, + m, =
0 and m,+m, <0, respectively. For u(1/1) all grade star representations are aiso star
representations and vice versa.

Let the iowesi-weight state veciors for osp(2/2) b

(b)) Y _
Iwy=|(<2j+1+ajb—1+a) )= | THF1Fal2b 1+“)> (2.74)

m
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where @ =0, and m=—-2j+1+a or —2j+a, and let the highest-weight state vectors
for osp{2/2) be
(b, )
2j|2b
lhwy= [(2j]26) } = ‘( J1 )> (2.7b)
m

’

m

where m'=2j+2b or 2j+2b—1. Obviously, |lw) and |hw) satisfy

(g:) w)=0 (2.8a)
and _

(::) [hw}=0 (2.85)
respectively.

It should be noted that the complete reducibility into irreps of u{1/1) will only
take place for irreps of 0sp(2/2) which are stars for the u(1/1) subalgebra; i.e. when
b=jor j+b <0, It can easily be verified that

W)y _ 5 |lw))
Cz(OSP(z/Z))(lhw))—(J bz)(|hw)' (2.9)

3. vcs representations of osp(2/2) in u(1/1) basis

In vcs theory the Z-gradation of the Lie algebra or Lie superalgebra g is
g=nytn.tn_ (3.1)

where n,, containing Cartan subalgebra of g, is the stability subalgebra of g, and n,
are nilpotent subalgebras of raising and lowering type operators, respectively. However,
when both g and n, are Lie superalgebras, the Z-gradation of g defined by (3.1) is
not consistent with the Z,-gradation of the algebra. When g = osp(2/2),and no=u(1/1),
the Z-grading operator can be defined as

F=YE\+ED) (3.2)

while the Z,-grading operator is 2= E} (see [T]).

The novel features of vcs theory applied to Lie superalgebras in superalgebra basis
are the following. Firstly, the coset representative exp X of G/ N, with X en, (or
n_), is parametrized by both Bargmann and Grassmann variables since n, {or n_)
contains elements from both odd and even parts of the superalgebra g. Secondly, in
contrast to the vcs theory applied to Lie superalgebras in the Lie algebra basis, in this
case the Bargmann variables and Grassmann variables transform as the components
of the same irreducible tensor of n,.

In the following, we will construct vcs representations of osp(2/2) in the u(1/1)
basis. -

According to the v¢s theory, the vos wavefunction can be built on the lowest-weight

state vectors

¥(z, 8)=%

"

<(—2j+ 126 - 1)(e:;,_+,m_[\p)'("2f +1)26 - ')> (3.3)
m m
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where z and ¢ are Bargmann and Grassmann variables, respectively. Using the commu-
tation and anticommutation relations given by (2.1), we readily obtain the following
vCs representations of osp(2/2):

[(E)=€)+2z0.+ 63,

T(E})=&5+09,

IEN)=€,++v2 z3,

[(E_)=%_+V2 63, (3.4)
TA) =4a, I'(B_}=a.

MAD = —V2zE€_+6(&i- %) —262:62

C(B)= -2 88, —2:z8)-22008,—-227,

where {&,, €, (i=1,2)} span an intrinsic algebra u{(1/1} only acting on the lowest-
weight states defined by (2.6).

As shown in [8], the indefinite metric should be introduced in order to derive
u(1/1) ca coefficients. The relation between the metrics of two subspaces is

E(mm,, m)E(mm,, m —1)=5(m,+m,)  (3.5)
where
%E(mlmz,ml—a)=<(m'm2) (mlfm2)> (3.6)
m—oa | m-—-a
with @ =0 or 1. The matrix element of an operator T should be written as
Al _ (A
%’(A'q’)< T > (3.7)
q q
i A
We assume that T always acts on the right vector >
q
The definition of the irreducible tensor is
A A
LE, T{1= %s(Aq')< 1E >T;} (3.8)
q q
where
[E, T,1=ET,—(—}""'T,E (3.9)

E is u(1/1) generator, and o{Aq) is the grade of T.

From (3.8) we know that (z"/vnl, z"7'8/v(n—1)!) and (d,, 5.) are u(1/1) (2n|0)
and (—1|-1) tensors corresponding to type 1(m, + m,=0) and type 2 (m, + m, <0) star
representations, respectively. Using (3.5), we successively obtain

(m]+2n|m:)> _3_" (m,|m2)>
m+2n ~Vnt m,

’(m1+2n—1|m3+1)>_ " 'e (m,|m3)>
m,+2n-2 _\/(n—l)! m,—1
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(m1+2n|m2)>_[ m, +m, ]'fz_zi

m+2n—1 m, +m,+2n vn!

(ml!m1)>
m,—1
(3.10}

+[ 2n ]'/2 z"7'g (m,|m2)>
m+m,+2n] Yn=1)'| m
(m,+2n—1m,+ 1)>

m,+2n—1
_[ m+m, :l”z z"7'6 (m,|m2)>

m +m,+2n V(n—-1)! m,
+[ 2n ]”2 z" (m,1m2)>
m+m+2n) Val| m-1/[

Equation (3.11}) also gives orthonormal BG basis vectors for osp(2/2) when {(m,|m,) =
(=2j+1|2b—1) and b=}
The u(1/1) cG coefficients satisfy the following orthogonality conditions

A A [AN/AL A AN
M‘ZMZ (AlMl)g(AzMz)<Ml M, M><M] M, M,>-%5(AM)5,\,\.5MM. (3.11a)
A[ A2 A A] A2 A>_
T%%’(AM)(MI M, M><M; i M = (A M) E(AM)E s B aramry (3.115)

The u(1/1) reduced matric elements are defined by the following Wigner-Eckart
theorem [8],

A,>

M,

= (A” T'\ZHAI)?S(AM)%(A. Ml)g(A2M2)<

A,
Tt

%’(AM)(;}I

Al Ay A>
M, MM/ (3.12) -

It should be stressed that the u(1/1) cG coefficients and Wigner-Eckart theorem given
by (3.12) applies to star representations of one type only (for b= or j+b<0); the
decomposition of a type 1 star irrep (b= f) with a type 2 star irrep (b4 <0} is not
completely reducible. Thus orthonormal BG vectors corresponding to type 2 star irreps
(b+j<0) cannot be obtained from (3.10). But we can construct them in the highest-
weight space of osp(2/2). In this case the vcs wavefunctions can be written as

<(21l2b) (2j|2b)>
m m [/

Wz, 8)=Y S |V (3.13)

m

Using the commutation and anticommutation relations given by {2.1), we similarly
obtain the following vcs representations of osp(2/2):

T(EY) =%} 2z5. 0,

T(E})=%5- 64,

[(E.)=%.+V2 80,

T(E_y=%_-V2za, (3.14)
I'(AL)=2a, [(B,)=3.

[(AL)=V2 2%, + 0(E]— €}) + 2629,

T(B_)=+v2 08_+ 228,229 —2269,.
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From (3.8) we know that (z°/v/n?, z°7'8/v/(n—T}1) is the u{1/1) (=2n+1|—1) tensor
corresponding to type 2 (m, + m, <0} star representations. Similar to (3.10) we obtain

‘(m,—anm2)>_i"m (m||m2)>
m—2n—1/ nl| m~—1
I(m1—2n|m2)>

m,—2n

_[ 2n ]”2 z"7'0 (mxlm2)>
B S(m,+my,—2n)(m,+m,—2n) Yin=-1!| m—1

+[ S(m,+my)(m,+ m,) :Iln_{: (ml|m2)>
S(my+m;—2n)(m + m;—2n) Vn! m

(3.15)
l(m, —2n+1|m2~—1)>_ z"7'e (m,|m2)>
m,—2n+1

V1)t m,

'(m,—2n+1|m2—1)>
m;—2n

__[ S(m, +my)(m, + m,) ]W z"7'9 (m]|m2)>
T LS(mAma=2n)(m+m,—2n)] n—11] m—1

(m,|m2)>.

2n 2z ogn
+ ——
[S(m,+m2—2n)(m,+m2~2n)] Vnl m,

Equation (3.15) also gives the orthonormal BG vectors for osp(2/2} when (m,|m,) =
(2j|2b) and b+ <0.

4. Matrix representations of osp(2/2) in the u(1/1) basis

In order to obtain the Hermitian representation y = K 'T'K, we need to derive K*
matrices which can be obtained from the following equation [3],

(x]K’T'(G)y) = e(xIT(G.)K7y) (4.1)

where G.=A_ or B, and ¢ takes a constant value +1 or —1 for all matrix elements
for a star representation. As pointed out in [8)], no grade star representation exists
which is not already a star in this case, In the following, we discuss the condition for
star representations.

For type 1 star representations (b= j) the recursion relations for K* matrices are

K*2n—2j+2,2b)
K*(2n-2j+1,2b-1)

=2(z)(b+j) (42a)

K(Q2n+1)—-2j+a+1,2b+a—1)
K*Q2n=2j+a+1,2b+a—-1)

=2£)(2j—n~1) (4.2b)

for « =0 or 1. Because j>0 and b = j, we should choose positive sign on the rus of
(4.2a, b), which corresponds to the condition that

(y(G.))' = v(G=). (4.3)
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From {4.2) we obtain
K'(2n-2j+a+1,2b+a—1)
={2"(2j—1)!/(2j~—n—1)! for @ =0
2702 - DY (2 —n—1}1]2(b+) for a =1.
For type 2 star representations (b +j < 0) the recursion relations for K* matrices are
K*(2j-2(n+1)—a,2b—a)
K(2j-2n—a,2b—-a)
K*(2j-2n-1,2b-1)
K*(2j—2n,2b)

for @ =0 or 1. Because j> 0 and b < —j, we should choose a minus sign on the rHs
of (4.5a, b}, which corresponds to the condition that

(Y(G)' = -¥{(Gx). (4.6)
Equation (4.5) gives
K*(2j-2n—a,2b—a)
_{2"(2j—1)!/(2j—n—1)! for a =0
22 - 1)/ —n—1)12(j—b) for a =1.
Combining (3.10), (4.4), (3.15) and (4.7), we obtain the following branching rule for
osp(2/2){u{1/1)
osp(2/2Hu(1/1)

2j-1

(b, Y=Y [(=2j+1+2n2b—-1}+(-2j+2n+2(2b)] (4.8a)

(4.4)

=—2(£)(2j~n—1) (4.50)

=2(£)(b-)) (4.5b)

(4.7)

for both b= and b+j<(.

In the following, we give all the non-zero matrix elements of z and § for type 1
and 2 star representations, respectively. For type 1 star representations we can use the
positive definite metric since m, + m,3 0 is always satisfied. In this case we will write
the matrix elements of T as (m’|T|m) instead of &(m’)(m’'|T|m). They are

<(m1+2n+2|m2) }(m,+2n|mz)>:(n+l)|/z
m+2n+2 m,+2n
(ml+2n+1|m2+1)’ ‘(m1+2n—lim2+l)> (m)/2
Z =
m,+2n m,+2n-2

(my+2n+2|my) ‘(ml+2n|m2)>_ [(m.+m2+2n)(n+1)]'”
m+2n+1 z m+2n—1 {m +m,+2n+2)
)

<(ml+2n+l[m2+l ;Z (ml+2n—1[m2+1)>=[n(m]+rnﬁfirﬂn?)]”2

m+2n+1 m,+2n—1 {m,+m,+2n)
(m,+2n+l|m2+l)‘ ‘(m.+2n|m3)> [ 2m,+ ms) :|”:
z =
m +2n+1 m,+2n—1 {m,+my+2n)(m+myt+2n+2)

(4.8b)

{mty+ 20+ 2{m.)
m|+2n+1

e!m, +2n{m3}>2[ 2(n+1) }'“

m,+2n m +m,+2n+2
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<(m,+2n+1|m2+l) ; (m1+2n1m2)>_ [ m,+ m, :|”2
my+2n+1 m,+2n m +m,+2n+2

<(m,+2n+1|m2+1) o (m,+2n{m2)>__|: m,+m, ]”2
m +2n m+2n—1 m,+m,+2n

<(ml+2n+l|m2+l) (m,+2n—1|m2+l)>_[ 2n ]”2
m,+2n m +2n—1 T lmtmat2n]

For type 2 star representations (b+j <0) we have

g(!ﬂ|"‘2n“2,m2;ml_zn_3)<(m|—2n—2|mz) ‘(m|—2n|m2)> (n+ 1)
m,=2n-3 m,—2n—1
2 2
E(m,—2n -2, my, m,—2n — 2)((m-. n—2m,) |(m, n|m2)>
fﬂ,l 4!1—4 ml 7H ,,

- [(n+1)(2n —m, - mz)]”2

2n+2—m —m,

~2n—1|m,—- —2n+1m,~1
%’(1/1'11—211—1,mz--l;m,-—ln—2)<(ml n—1lm, 1)’2'(m1 nt1jm, )>
m—-2n-2 m,—2n

z[n(2n+2—m1—m2):|”2

2n—m;—m,

~2n—-1\m,—1 —2n+ -
?g(ml2i»zfl,ml—l;m]—2n—1)<(m1 " m>=1) z (my =20+ 1]m; 1)>
m,—2n-1 m—2n+1

=(n)’

— -1 -1 -7 ’
fg(m,—Zn—l,mz_l;ml_zn_2)<(m1 2n—1\m,—1) , (m, "]m-)>

m—2n-2 m,—-2n
_ [ 2(m, +m,) ]“2 (4.9)
2n+2—m,—my)(m, +m,—2n) |
(m,—2n—2|mq)) ‘ —2n|m¢)>
E(my—2n—2 my;m—2n—
{(m,—2n—2 my, m—2n 2)< m—2n—2 m—2n—1

_[ 2(n+1) ]]/2
B 2n—m—my+2
1__2”_1)<(m,-2n—1|m2-1)’9‘(m,—2n|m2)>

E(m=2n-1,m, m,—2n-1 m,—2n
1 1

_ m+ m, ]”2
m +m,—2n

‘Eg(m,—2n—1,m2—l;m,—2n—1)§ o
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E(m —-2n~1,m,~1; m1—2n—2)<

__[ m,+m, ]”2
m+my,—2n-2]

The reduced matric elements of T® =(z, 8) in the type 1 star representation are

(ml—2n—1|m2—1)'6|(m1—2n|m2)>
m ~2n-2 m,—2n-~1

((my+2n+2|my|| T (m, +28|m,)) = (n+1)"?
((my+ 20+ 1 m+ D[ T2 (m,+ 20— 1| my+1))

E[n(ml+m2+2n+2) 12 (4.10)
m;+m,+2n )
mt+m 172
((m1+2n+1|mz+1)||Tulm|1(m|+2n|m2))=[—';1—]_'_1%—_‘_22”]
While the reduced matrix elements of T'7'1"" = (2, 8} in the type 2 star representations
are
((m, =20 =2|m) | T""=Y)|(m, = 2njmy)y = (n+1)'7?
{(m,=2n—1my—D|| T (m, —2n + 1|my— 1))
2n+2-m, — 12
:["(; i ”'2)] (4.11)
n—m;,—m,
+m, 1/2
((m,—Zn—Ifmz—l}HT(""”H(m,—anmz))=[—m-’—L] .
m,t+m,-2n

In (4.8) and (4.10) (m,|ms)={(-2j+1|2b—1) and b=j, while in (4.9) and (4.11)
{m,|m) = (2j]2b) and b+ j<O0.

The matrix elements of ¥{A,) and y(B.) can then be obtained through the following
relations

! [
<(m,|m2) y(As)

r

(m||m2)>
m

_ :F<(mllm2)"y(Ai)
m

_ K(mim)) <(M1|m’z)
K{m;m;) '

m
()i
m m

<(mlim:)
m

(milm5)>

m;

(4.12a)

o|(mim)

m

=F

(milm'z)>

mr

¥(B.)
_ K(m\m} <(m:m;)
 K(m,m) '

m
for type 1 (the lower sign) and type 2 (the upper sign) star irreps, respectively. The
representation is atypical when b=j for type 1 and b= —j for type 2 star irreps.

z‘(m'|m2)> (4.12b)

m
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We can also obtain the following reduced matrix elements of y(G.), where G.= A,
or B,:

o K(mm})
<(m.|mz||~/(G+)||(m1Imz)>‘(—'L)“ m; | m || T2 (my | my)) (4.13)
I
for type 1 star irreps, and
K r ’
(i)Ym= e e | T )y (4.14)
LSRG

for type 2 star irreps, respectively. However, the Wigner-Eckart theorem cannot be
applied to y(G) (y{(G.)) for type 1 (type 2) star irreps because they transform as
u{1/1) tensors of different type; the decomposition of a type 1 star irrep with a type
2 star irrep is not completely reducible,

This procedure can be extended so astobe a

n
ocedure can be exfenad D
0

u(m/n) basm. But the calculation will be more ¢

nl;gd to the general osn(2m/2n) in

LA LIIL pRiliddl U PSS &It 22
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