
Matrix representation of Osp(2/2) in the U(1/1) basis

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1991 J. Phys. A: Math. Gen. 24 603

(http://iopscience.iop.org/0305-4470/24/3/018)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 01/06/2010 at 14:06

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/24/3
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


I. Phys. A: Math. Gen. 24 (1991) 603-612. Printed in the U K  

Matrix representation of Osp(2/2) in the U(l / l )  basis 

Feng Pant and Yu-Fang Caoi  
t Department of Physics, Limning Normal University, Dalian 116022, People's Republic 
of China 
i Department of Physics, East China Normal University, Shanghai 200062. People's 
Republic of China 

Received 22 May 1990, in final form 6 November 1990 

Abstract. Vector coherent slate theory is applied io matrix representations of Osp(2/2) in 
the U(1/1) basis. The branching rule of Osp(2/2)1U(l/l)  is derived. Finite-dimensional 
irreducible matrix representations ofOrp(2/2) in the U( 111) basis are discussed and matrix 
elements ofOrp(2/2) generators are obtained by using the K-matrix technique. 

i. iniroduciion 

Lie superalgebras osp(m/Zn) or osp(m/2n, R )  are useful in the exploitation of super- 
symmetry in physics. For example, the non-compact supergroups osp(m/2n, R )  have 
been employed in general superfield theories [l], and osp(4/2. R )  is also useful in 
describing the nuclear spectra of the nickel isotopes [2]. 

representations of g l ( m / n )  in the gl(m)@gl(n) basis [3-51, and osp(m/2n) in the 
so(m)@sp(Zn) basis [ 6 , 7 ] .  In [3] and [7] Le Blanc and Rowe demonstrate that vector 
coherent state (vcs) theory applies without substantial modification to the representa- 
tion theory of  classical Lie superalgebras in the Lie algebra basis. Recent development 
[8] shows that vcs theory applies equally well to Lie superalgebras in the superalgebra 
basis. !n !his circums!ance, no grade stir  representation exists. 

In this paper, we will consider osp(2/2) in the u ( l / l )  basis, which is the starting 
point for studying the general case osp(2m/Zn) in  the u ( m / n )  basis. In section 2, we 
briefly review the main properties o f  the osp(2/2) and u ( l / l )  finite-dimensional 
irreducible representations. In section 3, the irreducible representation of osp(2/2) in 
the u ( l / l )  basis will be constructed via vcs theory. In section 4, we will derive matrix 
elements of osp[2/2) generators, 
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2. The superalgebras osp(212) and u( l / l )  

The superalgebra osp(2/2) can be defined by the following commutation and anti- 
commutation relations: 

[E , : ,  €*I=*€, [E: , ,  E,1=7E, [€ . ,E+]+=€; ,+€:  

[ B , ,  B-]=ZE: [E;,, B , I = ~ ,  [E;,B,I=o 

[€:,,A,]=*A, [ E : ,  4 1  = * A +  [ A - ,  A+]+ = -E :+  €: 

(2.1) 
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[A,, E,], = fi B ,  

[A, ,  E,], = [ B, ,  E,] = [ E , ,  A,] = O  

where 
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[ E , ,  E,] = 7 fi A, [ B , , A , ] = * f i E ,  

The symbols W,,  V,, Q, ( i  = 0, -. +), and B were used in [9] to denote the generators 
of the OSp(2/2). 

C2(osp(2/2)) =ac, (~( l / l ) )+a(A+A--A_A+)  +%B-B++ B + B - )  (2.3) 

where 

The quadrupole Casimir operator of Osp(2/) can be written as 

Cz(u(l/1)) = ( E r + € - € + -  (2.4) 

is the quadrupole Casimir operator of u ( l / l ) .  
There are two classes of star representations of osp(2/2), which are composed of 

the ( h ,  j )  representations for which h is real and * h  2 j [9]. 
From (2.1) we can see that { E h  ( i = l , 2 ) ,  E+} forms u ( l / l )  subalgebra. The u ( l / l )  

irreducible representation is two dimensional. The basis vectors can be expressed as 

We also have [8] 

(2.5a) 

where S(x) is the sign of x, namely 

iorxaO 
-1 for x<O. 

There are also two classes of star representations for U( I /  1) corresponding to m, -k mz 3 

0 and m,+m,<O, respectively. For u ( l / l )  all grade star representations are also star 
representations and vice versa. 

Let r'ne iowesr-weight sraie veciors for osp(2/2) be 
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where a = 0, and m = -2j+ 1 +a  or -2j + a; and let the highest-weight state vectors 
for osp(2/2) be 

where m'=2j+2b or 2jf2b-1.  Obviously, Ilw) and Ihw) satisfy 

( A - )  E-  (Iw) = 0 

and 

iA+) Ihw) = 0 
E+ 

respectively. 
It should be noted that t t  

take place for irreps of osp(2, 
b 2 j or j + 6 < 0. It can easily be verified that 

mplete  reducibility int 
which are stars for the 

(2.76) 

(2.8a) 

(2.86) 

irreps of u ( l / l )  will only 
111) subalgebra; i.e. when 

3. v c s  representations of osp(212) in u(ll1) basis 

In vcs theory the Z-gradation of the Lie algebra or Lie superalgebra g is 

g =  n o + n + + n -  (3.1) 

where no, containing Cartan subalgebra of g, is the stability subalgebra of g, and n, 
are nilpotent subalgebras of raising and lowering type operators, respectively. However, 
when both g and no are Lie superalgebras, the Z-gradation of g defined by (3.1) is 
not consistent with the2,-gradationofthe algebra. When g=osp(2/2),and n ,=u( l / l ) ,  
the Z-grading operator can be defined as 

$ = $ ( E h +  E ; )  (3.2) 
while the Z,-grading operator is 2 = E: (see [ 7 ] ) .  

The novel features of vcs theory applied to Lie superalgebras in superalgebra basis 
are the following. Firstly, the coset representative exp X of G /  No,  with X E n ,  (or 
___,, n I 1s nnmmetriTrd hy ho!h Bargmann and Grassmann variables since n+ (or n-) 
contains elements from both odd and even parts of the superalgebra g. Secondly, in 
contrast to the vcs  theory applied to Lie superalgebras in the Lie algebra basis, in this 
case the Bargmann variables and Grassmann variables transform as the components 
of the same irreducible tensor of no.  

In the following, we will construct vcs representations of osp(2/2) i n  the u ( l / l )  
basis. 

According to the vcs theory, the vcs wavefunction can be built on the lowest-weight 
state vectors 
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where z and 8 are Bargmann and Grassmann variables, respectively. Using the commu- 
tation and anticommutation relations given by (2.l), we readily obtain the following 
vcs representations of osp(2/2): 
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r ( E : ) =  8;,+2rd,+8JH 

r(E:)=.e:+sa, 

(3.4) 

where {8* ,  %; ( i  = 1 , 2 ) }  span an intrinsic algebra u ( l / l )  only acting on the lowest- 
weight states defined by (2.6). 

As shown in [SI, the indefinite metric should be introduced in order to derive 
u ( l / l )  cc coefficients. The relation between the metrics of two subspaces is 

g ( m l m 2 ,  m d g ( m , m z ,  m , - 1 ) = S ( m , + m 2 )  (3.5) 

where 

with a = O  or 1. The matrix element of an operator T should be written as 

We assume that T always acts on the right vector 

The definition of the irreducible tensor is 

(3 .7 )  

where 

[ E ,  T:]= ET~-(-)’”‘““’T~E, (3.9) 

E is u ( l / l )  generator, and u ( A q )  is the grade of TJ. 
From (3.8) we know that ( z ” / m ,  z ” - ’ f l / J O ‘ )  and (&,a,) are u ( l / l )  (2n10) 

and (-11-1) tensors correspondingto type l ( m , + m , a O )  andtype2 ( m , + m , < O )  star 
representations, respectively. Using (3.5), we successively obtain 

( m I + 2 n  I m d >  = 1 ( mi:d) m , + 2 n  m 



Matrix representation of Osp(2/2) in  the U(1/1) basis 607 

(3.10) 

( m , + 2 n - l l m 2 +  1) 
m , + 2 n  - 1 

Equation ( 3 . 1 1 )  also gives orthonormal BG basis vectors for osp(212) when ( m , l m 2 )  = 
( - 2 j + 1 1 2 b - 1 )  and b a j ,  

The u ( l /  I )  CG coefficients satisfy the following orthogonality conditions 

The u ( l / l )  reduced matric elements are defined by the following Wigner-Eckart 
theorem [8], 

(3.12) 

It should be stressed that the u ( l / l )  cc coefficients and Wigner-Eckart theorem given 
by (3.12) applies to star representations of one type only (for b a j  or j + b < O ) ;  the 
decomposition of a type 1 star irrep ( b a j )  with a type 2 star irrep (b+ j<O)  is not 
completely reducible. Thus orthonormal BG vectors corresponding to type 2 star irreps 
( b + j < O )  cannot be obtained from (3.10). But we can construct them in the highest- 
weight space of osp(2/2). I n  this case the vcs wavefunctions can be written as 

(3.13) 

Using the commutation and anticommutation relations given by (2,1), we similarly 
obtain the following vcs representations of osp(2/2): 

r(E;,)= & - 2 ~ a , - e a , ,  

r ( E 2  = gi- m, 

(3.14) 
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From (3.8) we know that ( z " / m ,  z"-'O/Jo!) is the u ( l / l )  (-2n + 11 - 1) tensor 
corresponding to type 2 ( m ,  + m,<O) star representations. Similar to (3.10) we obtain 
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( m ,  - 2 n / m 2 )  )=" I (ma!md) 
m , - 2 n - 1  m m,-1  

2n 

(3.15) 

( m ,  -2n + l [ m 2 -  1) 

m ,  -2n 

Equation (3.15) also gives the orthonormal BC vectors for osp(2/2)  when (m,lm2)= 
(2jIZb) and b+j<O. 

4. Matrix representations of osp(Zf2) in the u(ll1) basis 

In order to obtain the Hermitian representation y = K - l T K ,  we need to derive K 2  
matrices which can be obtained from the following equation [3], 

(x !K2r ' (G- ) ly )  = 4XIr(G+)K2/y) (4.1) 

where G, = A, or E , ,  and E takes a constant value + I  or  -1 for all matrix elements 
for a star representation. As pointed out in [8], no grade star representation exists 
which is not already a star in this case. In  the following, we discuss the condition for 
star representations. 

For type 1 star representations ( b  2 j )  the recursion relations for K' matrices are 

K ' ( 2 n - 2 j f 2 ,  26)  
K2(2n-2 j+ 1 , 2 b - I )  

=2( *)( b + j )  ( 4 . 2 ~ )  

(4.26) K'(2(n+ 1 ) - 2 j + a +  1 ,2b+a - I )  
K'(2n -2 j+a+1,2b+a - 1 )  

= 2 (  * ) ( 2 j - n -  I )  

for a = O  or 1. Because j >  0 and b 2j, we should choose positive sign on the R H S  of 
(4.2~1, b ) ,  which corresponds to the condition that 

( y ( G + ) ) ' =  y(G7). (4.3) 
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From (4.2) we obtain 

K 2 ( 2 n - 2 j + a + l , 2 b + u - 1 )  

(4.4) 
2"(2j-  l ) ! / ( Z j - n  - l ) !  for a = O  

for a = 1 .  =i 2"[(2j-  1 ) ! / ( 2 j  - n - 1 ) ! ] 2 ( b + j )  

For type 2 star representations ( b  + j  < 0)  the recursion relations for K 2  matrices are 

K2(2j -2(n  + I ) - a ,  26-  a )  
K 2 ( 2 j - 2 n - a , Z b - a )  

= - Z ( + ) ( Z j - n - l )  

K 2 ( 2 j - 2 n  - I , 2 6 -  1 )  
K2(2j-2n, 2 6 )  =2(  * ) ( b - j )  

(4.50) 

(4.56) 

for a = 0 or 1. Because j > 0 and b < -j, we should choose a minus sign on the RHS 

of (42x1, b), which corresponds to the condition that 

( Y ( G * ) ) +  = -Y(G*).  (4.6) 

Equation (4.5) gives 

K 2 ( 2 j - 2 n - a ,  2 6 - a )  

for a = O  
(4.7) 

2"(2j-  1 ) ! / (2 j  - n - I ) !  = {  2"[(2 j -  l ) ! / ( Z j -  n - l ) ! ] Z ( j -  b )  for a = 1.  

Combining (3.10), (4.4), (3.15) and (4.7), we obtain the following branching rule for 
OSP(2/2)3U(l/ 1 )  

OSP(2/2)lU(l/ l)  
2.;-I 

(b ,  j )  = 1 [(-2j+ 1 +2n12b - 1)+(-2j+2n+2126)] (4.80) 
" = U  

for both b a j a n d  b+j<O. 
In the following, we give all the non-zero matrix elements of z and 8 for type 1 

and 2 star representations, respectively. For type 1 star representations we can use the 
positive definite metric since m ,  + m,*O is always satisfied. In this case we will write 
the matrix elements of T as (m'ITlm) instead of %(m')(m'lTlm).  They are 
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m, + m2+2n+2 
- [ m'+m2 I"' 

m,+2n  

m , + 2 n + l l m , + l )  1/2 

For type 2 star representations ( b  + j < 0) we have 

= [ ( n + 1 ) ( 2 n - m , - m 2 )  '/' 
2 n + 2 - m ,  - m2 1 

= [ n ( 2 n + 2 - m ,  - m z )  ' I 2  

2n - m,-m, 1 

) (( m , - 2 n - 2  1 0 1  m , - 2 n - 1  

) 1 0 1  m , - 2 n  

m,-2n-21m2) (m,-2nlm,)  
8 ( m ,  -2n  - 2 ,  m,; m,  -2n  -2 )  

, / 2  

= [2n-2:+:2+21 

= [ m , ~ : 7 2 n ]  

m,  - 2n - 1 Im2 - 1 )  ( m ,  - 2nlm2) 
(( m ,  - 2 n  - 1 

%(m,  - 2 n  - 1,  m2-1;  m,  - 2 n - 1 )  

1/2 

((3, - 2 n  - !1m2- l)i81(x, -2n+"- - 

m, - 2 n  '1"'2 !I) %(m, -2n  - 1,  m2- 1 ;  m ,  - 2 n -  1 )  
m ,  - 2 n  - 1  

=[ 2n - m ,  2 n  - m z  ]'I2 
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= - [  m,+mz 1"' 
m , + m 2 - 2 n - 2  

The reduced matric elements of T"Io1 = ( 2 ,  0)  in the type 1 star representation are 

((m,+2n+21m,llT'21")ll(m,+2nIm,))= ( n +  1)"' 

(( m ,  + 2n + Ilm,+ 1)11 T'2'o'lI( m ,  + 2n - llm,+ 1 )) 

n(m,+m2+2n+2j  ' I 2  =[ m,+mz+2n 1 (4.10) 

While the reduced matrix elements of T'"'"'= ( 2 ,  0)  in the type 2 star representations 
are 

( ( m ,  - 2 n - 2 ~ m ~ j ~ ~ T ' ~ ' ' - ' ' ~ ~ ( m ,  -2n/m,))  = ( n  + 
( ( m ,  -2n-  l lmz-  1)11 T'- '" ' ' / l(m1 -2n + l lm2- 1 ) )  

= [ n(2n +2 - m ,  - m z )  "* 
(4.11) 

2n - m , - m ,  1 
In (4.8) a n d  (4.10) (m,lm2)=(-2j+112b-1) and b a j ,  while in (4.9) and (4.11) 
( m , / m 2 )  = (2j12b) and b + j <O. 

The matrix elements of y(A, )  and y ( B , )  can then be obtained through the following 
relations 

( 4 . 1 2 ~ )  

(4.126) 

for type 1 (the lower sign) and type 2 (the upper sign) star irreps, respectively. The 
representation is atypical when b = j for type 1 and b = - j  for type 2 star irreps. 
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We can also obtain the following reduced matrix elements of y(G, ) ,  where G ,  = A,  
or B,: 

for type 1 star irreps, and 

(4.13) 

for type 2 star irreps, respectively. However, the Wiper-Eckart theorem cannot be 
applied to y ( G )  ( y ( G + ) )  for type 1 (type 2) star irreps because they transform as 
u ( l / l )  tensors of different type; the decomposition of a type 1 star irrep with a type 
2 star irrep is not completely reducible. 

u ( m / n )  basis. But the calculation will be more complicated. 
This procedure can be extended so as to he applied to the genera_! osp(2n?/2n) i n  
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